Search results for "Sobolev extension"

showing 7 items of 7 documents

Strong BV-extension and W1,1-extension domains

2021

We show that a bounded domain in a Euclidean space is a $W^{1,1}$-extension domain if and only if it is a strong $BV$-extension domain. In the planar case, bounded and strong $BV$-extension domains are shown to be exactly those $BV$-extension domains for which the set $\partial\Omega \setminus \bigcup_{i} \overline{\Omega}_i$ is purely $1$-unrectifiable, where $\Omega_i$ are the open connected components of $\mathbb{R}^2\setminus\overline{\Omega}$.

46E35 26B30Mathematics - Metric GeometrymatematiikkaMathematics::Complex VariablesBV-extensionFOS: MathematicsSobolev extensionMetric Geometry (math.MG)Analysis
researchProduct

Hajłasz–Sobolev imbedding and extension

2011

Abstract The author establishes some geometric criteria for a Hajlasz–Sobolev M ˙ ball s , p -extension (resp. M ˙ ball s , p -imbedding) domain of R n with n ⩾ 2 , s ∈ ( 0 , 1 ] and p ∈ [ n / s , ∞ ] (resp. p ∈ ( n / s , ∞ ] ). In particular, the author proves that a bounded finitely connected planar domain Ω is a weak α -cigar domain with α ∈ ( 0 , 1 ) if and only if F ˙ p , ∞ s ( R 2 ) | Ω = M ˙ ball s , p ( Ω ) for some/all s ∈ [ α , 1 ) and p = ( 2 − α ) / ( s − α ) , where F ˙ p , ∞ s ( R 2 ) | Ω denotes the restriction of the Triebel–Lizorkin space F ˙ p , ∞ s ( R 2 ) on Ω .

Hajłasz–Sobolev extensionHajłasz–Sobolev imbeddingApplied Mathematics010102 general mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesSobolev spaceCombinatoricsHajłasz–Sobolev spaceUniform domainBounded function0103 physical sciencesWeak cigar domain010307 mathematical physicsBall (mathematics)Local linear connectivity0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Bi-Lipschitz invariance of planar BV- and W1,1-extension domains

2021

We prove that a bi-Lipschitz image of a planar $BV$-extension domain is also a $BV$-extension domain, and that a bi-Lipschitz image of a planar $W^{1,1}$-extension domain is again a $W^{1,1}$-extension domain.

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBV-extensionClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev extension46E35funktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Approximation by uniform domains in doubling quasiconvex metric spaces

2020

We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.

Pure mathematicsPrimary 30L99. Secondary 46E35 26B30Algebraic geometry01 natural sciencesDomain (mathematical analysis)funktioteoriaQuasiconvex functionMathematics::Group TheoryquasiconvexityMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsuniform domainComputer Science::DatabasesMathematicsPartial differential equationFunctional analysis010102 general mathematicsMetric Geometry (math.MG)General Medicinemetriset avaruudetMetric spaceBounded functionSobolev extension010307 mathematical physicsfunktionaalianalyysi
researchProduct

Sobolev Extension on Lp-quasidisks

2021

AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.

Pure mathematicsSobolev extension domainsProperty (philosophy)Lp-quasidisksMathematics::Complex Variables010102 general mathematicsMathematics::Analysis of PDEs0102 computer and information sciencesExtension (predicate logic)01 natural sciencesPotential theoryfunktioteoriaSobolev spacehomeomorphism of finite distortion010201 computation theory & mathematics0101 mathematicsfunktionaalianalyysiAnalysisMathematicsPotential Analysis
researchProduct

Bi-Sobolev extensions

2022

We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling-Ahlfors extension theorem is obtained. Furthermore we show that the existing extension techniques such as applying either the harmonic or the Beurling-Ahlfors operator work poorly in the degenerated setting. This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.

Sobolev extensionskvasikonformikuvauksetMathematics - Complex VariablesPrimary 46E35 30C62. Secondary 58E20FOS: Mathematicsharmonic extensionquasiconformal mapping and mapping of finite distortionSobolev homeomorphismsComplex Variables (math.CV)Beurling-Ahlfors extension
researchProduct

Sobolev homeomorphic extensions onto John domains

2020

Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous $W^{1,2}$-extension but not even a homeomorphic $W^{1,1}$-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents $p<2$. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.

funktioteoriaMathematics::Dynamical SystemsSobolev extensionsMathematics - Complex Variables46E35 58E20quasidisksFOS: MathematicsMathematics::General TopologySobolev homeomorphismsComplex Variables (math.CV)John domainsfunktionaalianalyysiMathematics::Geometric Topology
researchProduct